alexa Induced pluripotent stem cells derived from mouse models of lysosomal storage disorders
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Meng XL

Abstract Share this page

Most lysosomal storage diseases (LSDs) are life-threatening genetic diseases. The pathogenesis of these diseases is poorly understood. Induced pluripotent stem (iPS) cell technology offers new opportunities for both mechanistic studies and development of stem cell- based therapies. Here we report the generation of disease-specific iPS cells from mouse models of Fabry disease, globoid cell leukodystrophy (GLD), and mucopolysaccharidosis VII (MPSVII). These mouse model-derived iPS cells showed defects in disease-specific enzyme activities and significant accumulation of substrates for these enzymes. In the lineage-directed differentiation studies, Fabry-iPS and GLD-iPS cells were efficiently differentiated into disease-relevant cell types, such as cardiomyocytes and neural stem cells, which might be useful in mechanistic and therapeutic studies. Notably, MPSVII-iPS cells demonstrated a markedly impaired ability to form embryoid bodies (EBs) in vitro. MPSVII-EBs exibited elevated levels of hyaluronan and its receptor CD44, and markedly reduced expression levels of E-cadherin and cell-proliferating marker. Partial correction of enzyme deficiency in MSPVII-iPS cells led to improved EB formation and reversal of aberrant protein expression. These data indicate a potential mechanism for the partial lethality of MPSVII mice in utero, and suggest a possible abnormality of embryonic development in MPSVII patients. Thus, our study demonstrates the unique promise of iPS cells for studying the pathogenesis and treatment of LSDs.

This article was published in Proc Natl Acad Sci U S A. and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords