alexa Induction of ATM activation, histone H2AX phosphorylation and apoptosis by etoposide: relation to cell cycle phase.
Haematology

Haematology

Journal of Blood Disorders & Transfusion

Author(s): Tanaka T, Halicka HD, Traganos F, Seiter K, Darzynkiewicz Z, Tanaka T, Halicka HD, Traganos F, Seiter K, Darzynkiewicz Z

Abstract Share this page

Abstract Etoposide (VP-16) belongs to the family of DNA topoisomerase II (topo2) inhibitors, drugs widely used in cancer chemotherapy. Their presumed mode of action is stabilization of "cleavable complexes" between topo2 and DNA; collisions of DNA replication forks with these complexes convert them into DNA double-strand breaks (DSBs), potentially lethal lesions that may trigger apoptosis. Immunocytochemical detection of activation of ATM (ATM-S1981P) and histone H2AX phosphorylation (gammaH2AX) provides a sensitive probe of the induction of DSBs in individual cells. Using multiparameter cytometry we measured the expression of ATM-S1981P and gammaH2AX as well as initiation of apoptosis (caspase-3 activation) in relation to the cell cycle phase in etoposide-treated human lymphoblastoid TK6 cells. The induction of ATM-S1981P and gammaH2AX was seen in all phases of the cell cycle. The G(1)-phase cells, however, preferentially underwent apoptosis. The extent of etoposide-induced H2AX phosphorylation was partially reduced by N-acetyl-L-cysteine (NAC), a scavenger of reactive oxygen species (ROS). The maximal reduction of H2AX phosphorylation by NAC, seen in G(1)-phase cells, was nearly 50\%. NAC also protected a fraction of G(1) cells from etoposide-induced apoptosis, but had no such effect on S or G(2)M cells. However, no significant rise in the intracellular level of ROS upon treatment with etoposide was detected. The effects of etoposide were compared with the previously investigated effects of another topo2 inhibitor, mitoxantrone. The latter was seen to induce a maximal level of ATM-S1981P and gammaH2AX (partially abrogated by NAC) in G(1)-phase cells, but unlike etoposide, triggered apoptosis exclusively of S-phase cells. The data suggest that in addition to the generally accepted mechanism involving collisions of replication forks with the "cleavable complexes", other mechanisms which appear to be different for etoposide vs. mitoxantrone, may contribute to formation of DSBs and to triggering of apoptosis. This article was published in Cell Cycle and referenced in Journal of Blood Disorders & Transfusion

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

agriaquaculture@omicsonline.com

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

biochemjournals@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

chemistryjournals@omicsonline.com

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

clinicaljournals@omicsonline.com

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

engineeringjournals@omicsonline.com

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

nutritionjournals@omicsonline.com

1-702-714-7001Extn: 9042

General Science

Andrea Jason

generalscience@omicsonline.com

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

geneticsmolbio@omicsonline.com

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immunomicrobiol@omicsonline.com

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

nursinghealthcare@omicsonline.com

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

medicaljournals@omicsonline.com

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuropsychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

pharmajournals@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords