alexa Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3.


Neurochemistry & Neuropharmacology

Author(s): Hong J, Li N, Zhang X, Zheng B, Zhang JZ

Abstract Share this page

Abstract Copolymer-I (COP-I) has unique immune regulatory properties and is a treatment option for multiple sclerosis (MS). This study revealed that COP-I induced the conversion of peripheral CD4+CD25- to CD4+CD25+ regulatory T cells through the activation of transcription factor Foxp3. COP-I treatment led to a significant increase in Foxp3 expression in CD4+ T cells in MS patients whose Foxp3 expression was reduced at baseline. CD4+CD25+ T cell lines generated by COP-I expressed high levels of Foxp3 that correlated with an increased regulatory potential. Furthermore, we demonstrated that the induction of Foxp3 in CD4+ T cells by COP-I was mediated through its ability to produce IFN-gamma and, to a lesser degree, TGF-beta1, as shown by antibody blocking and direct cytokine induction of Foxp3 expression in T cells. It was evident that in vitro treatment and administration with COP-I significantly raised the level of Foxp3 expression in CD4+ T cells and promoted conversion of CD4+CD25+ regulatory T cells in wild-type B6 mice but not in IFN-gamma knockout mice. This study provides evidence for the role and mechanism of action of COP-I in the induction of CD4+CD25+ regulatory T cells in general and its relevance to the treatment of MS.
This article was published in Proc Natl Acad Sci U S A and referenced in Neurochemistry & Neuropharmacology

Relevant Expert PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version