alexa Induction of stable transcriptional blockage sites by adriamycin: GpC specificity of apparent adriamycin-DNA adducts and dependence on iron(III) ions.
Toxicology

Toxicology

Journal of Drug Metabolism & Toxicology

Author(s): Cullinane C, Phillips DR

Abstract Share this page

Abstract Initiated transcription complexes were exposed to adriamycin for up to 48 h. Subsequent elongation of the transcription complex revealed the presence of a series of discrete long-lived blockage sites. The mole fraction of blocked transcripts increased linearly with reaction time, adriamycin concentration, and Fe(III) concentration. Optimal conditions for formation of the blocked transcript were 24-h reaction time, 10 microM adriamycin, and 75 microM Fe(III) ions. Nine high-intensity blocked transcripts were observed, and all correspond to transcription proceeding up to G of GpC sequences of the nontemplate strand. The presence of 75 microM Fe(III) ions enhanced the amount of transcriptional blockages by 12-15-fold. Two blocked transcripts decayed with a half-life of 0.32 and 1.9 h, and one of these exhibited 100\% effective delayed termination 6 bp downstream of the original blockage site. All other blockages were unchanged after 3 h of elongation. Bidirectional transcription footprinting was used to define the physical size of the drug-induced blocking moiety as a maximum of 2 bp, and this was observed at all three GpC elements probed by RNA polymerase from both directions. The nature of the apparent covalent adducts has not yet been established but is probably a G-specific adduct deriving from a reduced form of the drug (quinone methide). Although the GpC specificity suggests an interstrand G-drug-G cross-link, these were not detected by heat denaturation and subsequent denaturing gel electrophoresis of the end-labeled promoter fragment.
This article was published in Biochemistry and referenced in Journal of Drug Metabolism & Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords