alexa Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Kadosh D, Johnson AD

Abstract Share this page

Abstract Candida albicans, the major human fungal pathogen, undergoes a reversible morphological transition from blastospores (round budding cells) to filaments (elongated cells attached end-to-end). This transition, which is induced upon exposure of C. albicans cells to a number of host conditions, including serum and body temperature (37 degrees C), is required for virulence. Using whole-genome DNA microarray analysis, we describe 61 genes that are significantly induced (> or =2-fold) during the blastospore to filament transition that takes place in response to exposure to serum and 37 degrees C. We next show that approximately half of these genes are transcriptionally repressed in the blastospore state by three transcriptional repressors, Rfg1, Nrg1, and Tup1. We conclude that the relief of this transcriptional repression plays a key role in bringing the C. albicans filamentous growth program into play, and we describe the framework of this transcriptional circuit.
This article was published in Mol Biol Cell and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version