alexa Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications.
Cardiology

Cardiology

Atherosclerosis: Open Access

Author(s): Zhao W, Robbins ME

Abstract Share this page

Abstract The threat of radiation-induced late normal tissue injury limits the dose of radiation that can be delivered safely to cancer patients presenting with solid tumors. Tissue dysfunction and failure, associated with atrophy, fibrosis and/or necrosis, as well as vascular injury, have been reported in late responding normal tissues, including the central nervous system, gut, kidney, liver, lung, and skin. The precise mechanisms involved in the pathogenesis of radiation-induced late normal tissue injury have not been fully elucidated. It has been proposed recently that the radiation-induced late effects are caused, in part, by chronic oxidative stress and inflammation. Increased production of reactive oxygen species, which leads to lipid peroxidation, oxidation of DNA and proteins, as well as activation of pro-inflammatory factors has been observed in vitro and in vivo. In this review, we will present direct and indirect evidence to support this hypothesis. To improve the long-term survival and quality of life for radiotherapy patients, new approaches have been examined in preclinical models for their efficacy in preventing or mitigating the radiation-induced chronic normal tissue injury. We and others have tested drugs that can either attenuate inflammation or reduce chronic oxidative stress in animal models of late radiation-induced normal tissue injury. The effectiveness of renin-angiotensin system blockers, peroxisome proliferator-activated receptor (PPAR) gamma agonists, and antioxidants/antioxidant enzymes in preventing or mitigating the severity of radiation-induced late effects indicates that radiation-induced chronic injury can be prevented and/or treated. This provides a rationale for the design and development of anti-inflammatory-based interventional approaches for the treatment of radiation-induced late normal tissue injury.
This article was published in Curr Med Chem and referenced in Atherosclerosis: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords