alexa Influence of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors on endothelial nitric oxide synthase and the formation of oxidants in the vasculature.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Bioequivalence & Bioavailability

Author(s): Parker RA, Huang Q, Tesfamariam B

Abstract Share this page

Abstract HMGCoA reductase inhibitors (statins) can have effects outside the target tissue, liver, including serious side-effects such as rhabdomyolysis as well as beneficial pleiotrophic effects. One such effect is upregulation of endothelial nitric oxide synthase (e-NOS) which generally leads to vasorelaxation. However, changing the balance between localized NO and O(2-) fluxes can also lead to oxidant stress and cellular injury through formation of reactive secondary oxidants such as peroxynitrite. We compared different statins for e-NOS subcellular localization, formation of pro-oxidants, and endothelial-dependent vascular function. Vascular relaxation in aortas of statin-dosed rats was inhibited with simvastatin (sevenfold higher EC50 for acetyl-choline induced relaxation) and atorvastatin (twofold increase) but not pravastatin. Ex vivo oxidation of the fluorescent redox probe dihydrorhodamine-123 (DHR-123) was increased in aortas from simvastatin treated rats, indicating increased reactive nitrogen and oxygen species. Human aortic endothelial cells incubated with simvastatin exhibited up to threefold higher intracellular oxidation of DHR-123 along with a twofold increase in total e-NOS protein. The elevated e-NOS was found in the Golgi/mitochondrial fraction and not in the plasma membrane, and using immunofluorescence greater e-NOS was observed proximal to Golgi and cytoskeletal structures and away from plasma membrane in simvastatin-treated cells. The data suggest that the action of lipophilic statins in endothelium can shift e-NOS localization towards intracellular domains, thereby increasing the encounter with metabolically generated O(2-) to produce peroxynitrite and related oxidants. Thus, under some conditions the direct action of lipophilic HMGCoA reductase inhibitors may unbalance NO and O(2-) fluxes and promote oxidant stress, compromising potentially beneficial vascular effects of e-NOS upregulation and increasing the potential for damage to muscle and other tissues.
This article was published in Atherosclerosis and referenced in Journal of Bioequivalence & Bioavailability

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords