alexa Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater.
Environmental Sciences

Environmental Sciences

International Journal of Waste Resources

Author(s): Szpyrkowicz L, Kaul SN, Neti RN, Satyanarayan S

Abstract Share this page

Abstract The treatment of tannery wastewater by electrochemical oxidation, mediated by an electro-generated species was carried out under galvanostatic conditions in an electrochemical reactor equipped with anodes based on noble metals and metal oxides (Ti/Pt-Ir, Ti/PbO2, Ti/PdO-Co3O4 and Ti/RhO(x)-TiO2). The decrease in time of chemical oxygen demand, nitrogen (TKN and ammonia), Cr and sulphides was monitored. The study showed that the rate of pollutant removal was significantly influenced by the type of anode material and electrochemical parameters. Different mechanisms contributed to the removal of pollutants when the reactor operated under conditions close to the limiting current for chlorine evolution and under much higher current density, with the reactor performing better at a high current/voltage. The kinetic pseudo-first order model applied for the interpretation of the results showed that the Ti/Pt-Ir and Ti/PdO-Co3O4 anodes performed better than the other two electrodes under the majority of tested conditions, with the highest rate of removal obtained for ammonia (kinetic rate constant k=0.75 min(-1)). Electrochemical oxidation can be applied as a post-treatment after the conventional biological process in order to remove the residual ammonia with low energy consumption (0.4 kWh m(-3)). This article was published in Water Res and referenced in International Journal of Waste Resources

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords