alexa Influence of degree of gas saturation on sonochemiluminescence intensity resulting from microfluidic reactions.
Chemical Engineering

Chemical Engineering

Journal of Chemical Engineering & Process Technology

Author(s): Tuziuti T

Abstract Share this page

Abstract This work examined the effects of dissolved gas degree of saturation (DOS) on sonochemical reaction yields in both a one-dimensional (1D) microspace and a three-dimensional (3D) millimeter-sized space. The extent of each reaction was monitored by measuring sonochemiluminescence (SCL) intensity at 213 kHz. The results demonstrated that, at relatively low levels of power density, selecting a solution DOS in the supersaturation range at atmospheric pressure resulted in higher yields per unit volume in the 1D space compared to that obtained from the 3D space. This effect is attributed to a decrease in the cavitation threshold of the 1D reaction system since, at low power density, the 1D space represents a more homogeneous reaction volume. Comparing the highest SCL intensity levels obtained from the 3D and 1D reactions shows that enhancing the reaction yield in the 1D space requires higher DOS values than are required to generate elevated yields in the 3D space. The 3D space contains a greater concentration of bubbles than the 1D space, but many of these are ineffective at promoting the reaction. Thus, reactions in the 3D environment require not only the application of higher power density levels but also a lower DOS, so as to allow the bubbles to undergo the violent pulsations necessary to facilitate the sonochemical reaction. This article was published in J Phys Chem A and referenced in Journal of Chemical Engineering & Process Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

OMICS International Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version