alexa Influence of exercise and training on motor unit activation.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Sports Medicine & Doping Studies

Author(s): Sale DG

Abstract Share this page

Abstract Human MUs vary considerably in twitch force, contractile speed, axonal conduction velocity, fatigue resistance, recruitment thresholds, firing rates, and firing patterns. These functional properties, together with the corresponding morphological characteristics such as soma size, axon diameter, and muscle fiber size, are interrelated. The smallest (soma size, axon diameter, muscle fiber size) MUs have the smallest twitch force, the slowest contraction speed, the slowest conduction velocity, the greatest resistance to fatigue, the lowest recruitment thresholds, and the lowest minimum and maximum firing rates. The converse applies to the largest MUs. Between the extremes are MUs with intermediate characteristics. MUs are generally recruited in order of size in voluntary contraction of increasing force or effort. Thus, units are recruited in order of increasing twitch force and contractile speed and decreasing resistance to fatigue. In some muscles MU recruitment occurs throughout the range of contraction force, whereas in other muscles most if not all MUs are recruited by about 50\% of maximum contraction force. The latter pattern is characteristic of small muscles that perform precise movements. The recruitment order of MUs according to size is based on the inverse relation between susceptibility to discharge and motoneuron size. Thus, for evenly distributed and increasing excitatory synaptic input to a pool of motoneurons, smaller motoneurons will begin to fire before larger motoneurons. This arrangement ensures, for example, that the small, fatigue-resistant MUs will be preferentially activated in prolonged, low-intensity exercise, to which these units are most suited. In brief, intense exercise, the associated greater excitatory input will also recruit the large MUs, taking advantage of their greater strength and contractile speed. A frequent question is whether rapid, ballistic or explosive contractions and movements are associated with selective or preferential recruitment of large, fast twitch MUs. There is evidence of synaptic input systems that preferentially excite large, fast twitch MUs and inhibit small twitch MUs; however, the majority of evidence from human experiments indicates that the recruitment order is not reversed in ballistic contractions. For technical reasons, most studies have used isometric contractions, but recently successful recordings of single MUs have been made during locomotion. Future research must develop a successful recording arrangement for the study of recruitment and discharge properties of single MUs in large proximal muscles during activities such as kicking, jumping, and throwing.(ABSTRACT TRUNCATED AT 400 WORDS)
This article was published in Exerc Sport Sci Rev and referenced in Journal of Sports Medicine & Doping Studies

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

imm[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords