alexa Influence of femoral stem surface finish on the apparent static shear strength at the stem-cement interface.


Journal of Applied Mechanical Engineering

Author(s): Zhang H, Brown LT, Blunt LA, Barrans SM

Abstract Share this page

Abstract The stem-cement interface has long been implicated in failure of cemented total hip replacement. Much research has been performed to study the factors affecting the bond strength between the femoral stem and the bone cement. The present study aims to further investigate the influence of femoral stem surface finish on the apparent static shear strength at the stem-cement interface through a series of pull out tests, where stainless steel rods are employed to represent the femoral stem. The results demonstrated that there was a general tendency for the apparent static shear strength to be increased with the rise of surface roughness. The polished and glass bead-blasted rods illustrated a slip-stick-slip failure whereas the shot-blasted and grit-blasted rods displayed gross interface failure. Following pull out test, cement transfer films were detected on the polished rods, and there was cement debris adhered to the surface of the grit-blasted rods. Micropores, typically 120 mum in diameter, were prevalent in the cement surface interfaced with the polished rods, and the cement surfaces in contact with the shot-blasted and grit-blasted rods were greatly damaged. There was also evidence of metal debris embedding within the cement mantle originating from the tests of the grit-blasted rods, indicating an extremely strong mechanical interlocking at the interface. In summary, this present research demonstrated that the grit-blasted rods with the highest surface roughness were the best in terms of apparent static shear strength. However, it seemed to be most applicable only to the stem designs in which mechanical interlocking of the stem in the initial fixed position was essential. This article was published in J Mech Behav Biomed Mater and referenced in Journal of Applied Mechanical Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version