alexa Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles.


Journal of Membrane Science & Technology

Author(s): Sauter C, Emin MA, Schuchmann HP, Tavman S

Abstract Share this page

Abstract In most applications, nanoparticles are required to be in a well-dispersed state prior to commercialisation. Conventional technology for dispersing particles into liquids, however, usually is not sufficient, since the nanoparticles tend to form very strong agglomerates requiring extremely high specific energy inputs in order to overcome the adhesive forces. Besides conventional systems as stirred media mills, ultrasound is one means to de-agglomerate nanoparticles in aqueous dispersions. In spite of several publications on ultrasound emulsification there is insufficient knowledge on the de-agglomeration of nanoparticulate systems in dispersions and their main parameters of influence. Aqueous suspensions of SiO2-particles were stressed up to specific energies EV of 10(4) kJ/m3 using ultrasound. Ultrasonic de-agglomeration of nanoparticles in aqueous solution is considered to be mainly a result of cavitation. Both hydrostatic pressure of the medium and the acoustic amplitude of the sound wave affect the intensity of cavitation. Furthermore, the presence of gas in the dispersion medium influences cavitation intensity and thus the effectiveness of the de-agglomeration process. In this contribution both, the influence of these parameters on the result of dispersion and the relation to the specific energy input are taken into account. For this, ultrasound experiments were carried out at different hydrostatic pressure levels (up to 10 bars) and amplitude values (64-123 microm). Depending on the optimisation target (time, energy input,...) different parameters limit the dispersion efficiency and result. All experimental results can be explained with the specific energy input that is a function of the primary input parameters of the process. This article was published in Ultrason Sonochem and referenced in Journal of Membrane Science & Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version