alexa Influence of oxidatively modified LDL on monocyte-macrophage differentiation.


Lupus: Open Access

Author(s): Radhika A, Jacob SS, Sudhakaran PR

Abstract Share this page

Abstract Transendothelial migration of peripheral blood mononuclear cells (PBMCs) and their subsequent interaction with the subendothelial matrix lead to their differentiation to macrophages (mphis). To study whether preexposure of monocytes in circulation to modified proteins influences their differentiation to mphis, an in vitro model system using isolated PBMC in culture was used. The effect of modified proteins such as oxidatively modified LDL (ox-LDL), acetylated and non-enzymatically glycated-BSA (NEG-BSA) on the differentiation process was studied by monitoring the upregulation of mphi specific functions such as endocytosis, production of matrix metalloproteinases (MMPs), expression of surface antigen, activity of beta-glucuronidase and down regulation of monocyte specific myeloperoxidase activity. Rate of endocytosis, production of MMPs and beta-glucuronidase activity were significantly greater in cells treated with modified proteins irrespective of the nature of modification. Both CuSO4 ox-LDL and HOCl ox-LDL increased the rate of expression of the mphi specific functions. FACS analysis showed that the rate of upregulation of mphi specific CD71 and down regulation of monocyte specific CD14 were high in cells supplemented with modified proteins. Studies using PPARgamma antagonist and agonist suggest its involvement in CuSO4 ox-LDL induced monocyte-macrophage (mo-mphi) differentiation whereas the expression of macrophage specific functions in cells exposed to other modified proteins was independent of PPARgamma. PBMC isolated from hypercholesterolemic rabbits in culture expressed mphi specific functions at a faster rate compared to normal controls indicating that these observations are relevant in vivo. These results indicate that preexposure of monocytes to modified proteins promote their differentiation to mphis and may serve as a feed forward type control for clearing modified proteins. This article was published in Mol Cell Biochem and referenced in Lupus: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version