alexa Influence of plasma free fatty acids on lipoprotein synthesis and diabetic dyslipidemia.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Julius U

Abstract Share this page

Abstract The regulation of hepatic VLDL secretion mainly depends on apolipoprotein (apo) B synthesis, on microsomal triglyceride transfer protein, insulin and the availability of triglycerides, free fatty acids (FFA) and cholesteryl ester. Four sources of fatty acids are used for lipoprotein synthesis: de-novo lipogenesis, cytoplasmic triglyceride stores, fatty acids derived from lipoproteins taken up directly by the liver and plasma FFA. Quantitatively, de-novo lipogenesis plays a minor role in regulating VLDL synthesis, but evidently it is elevated under conditions of high carbohydrate feeding. Cytoplasmic triglyceride stores appear to essentially contribute to VLDL triglycerides. Plasma FFA enter the hepatocytes and are either oxidized or esterified. The relationship between oxidation and esterification appears to be important in regulating the VLDL synthesis. An enhanced esterification is accompanied by increased VLDL secretion. The addition of oleic acid to hepatocytes has been shown to stimulate production of VLDL triglyceride and apoB. In human beings, an acute experimental elevation of plasma FFA stimulates VLDL production. In healthy men strong positive relations were found between the late increases in large triglyceride-rich lipoproteins and plasma FFA concentrations after 6 h following a mixed meal. In contrast, n-3 fatty acids impair VLDL assembly and secretion. Chronic hyperinsulinemia seems to stimulate VLDL production. On the other hand, the short-term addition of insulin has been shown to inhibit VLDL-triglyceride and apoB production in vitro. There is in vivo evidence that acute hyperinsulinemia suppresses VLDL-apoB and VLDL-triglyceride production in insulin-sensitive humans. Part of this action is due to suppression of plasma FFA. In patients with impaired glucose tolerance (IGT), VLDL production was increased when compared with subjects with normal glucose (NGT). When infusing a lipid emulsion, VLDL production could not be further stimulated in IGT patients in contrast to NGT persons. Hypertriglyceridemia in type 2 diabetes mellitus is usually the consequence of a VLDL overproduction. In type 2 diabetic patients, in contrast to normal men, insulin failed to suppress VLDL1 particle release. In normal men, an elevation of blood glucose led to a decrease in fatty acid oxidation and an increase in hepatic triglyceride secretion. Under these conditions, approximately 30\% of total VLDL triglycerides coming out of the liver did not originate from plasma FFA. In conclusion, plasma FFA seem to play an important role in stimulating hepatic VLDL production. Other factors such as chronic hyperinsulinemia or nutrition modify this effect. This article was published in Exp Clin Endocrinol Diabetes and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords