alexa Influence of releases from a fresh water reservoir on the hydrochemistry of the Tinto River (SW Spain).
Environmental Sciences

Environmental Sciences

International Journal of Waste Resources

Author(s): Cnovas CR, Olias M, VazquezSu E, Ayora C, Miguel Nieto J

Abstract Share this page

Abstract The Tinto River is an extreme case of pollution by acid mine drainage (AMD), with pH values below 3 and high sulphate, metal and metalloid concentrations along its main course. This study evaluates the impact of releases from a freshwater reservoir on the Tinto River, identifying the metal transport mechanisms. This information is needed to understand the water quality evolution in the long term, and involves the comprehension of interactions between AMD sources, freshwaters, particulate matter and sediments. This work proposes a methodology for quantifying the proportions in which the different sources are contributing. The method is based on the mass balance of solutes and accounts for the uncertainty of end-members. The impact of the releases from the Corumbel Reservoir on the hydrochemistry of the Tinto River was significant, accounting up to a 92\% of river discharge. These releases provoked a sharp decrease in dissolved metal concentrations, especially for Fe (approximately 1000 fold) due to dilution and precipitation. Cadmium, Zn, Cu, Co, Ni and Al suffered a dilution to a 12-16 fold decrease while Ca, Sr, Na, Pb and Si were less affected (2-4 folds decrease). However, these releases also gave rise to an increase in particulate transport, mainly Fe, As, Cr, Ba, Pb and Ti, due to sediment remobilisation and Fe precipitation. Aluminium, Li, K, Si, Al, Ni and Sr, together with Cu were present in the particulate phase during the discharge peak. The proposed 2-component mixing model revealed the existence of non-conservative behaviour for Al, Ca, Li, Mn, Ni and Si as a consequence of the interactions between the acidic Tinto waters and the clay-rich reservoir sediments during the bottom outlet opening. These results were improved by a 3-component mixing model, introducing a new end-member to account the chemical dissolution of clay-rich sediments by acidic Tinto waters. Copyright © 2011 Elsevier B.V. All rights reserved. This article was published in Sci Total Environ and referenced in International Journal of Waste Resources

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords