alexa Influence of the material removal mechanisms on hole integrity in ultrasonic machining of structural ceramics.
Engineering

Engineering

Global Journal of Technology and Optimization

Author(s): Nath C, Lim GC, Zheng HY

Abstract Share this page

Abstract Micro-chipping via micro-cracks, due to rapid mechanical indentations by abrasive grits, is the fundamental mechanism of material removal during ultrasonic machining (USM) of hard-brittle materials like ceramics and glass. This study aims mainly to investigate the adverse effects of this inherent removal phenomena on the hole integrity such as entrance chipping, wall roughness and subsurface damage. It also presents the material removal mechanism happens in the gap between the tool periphery and the hole wall (called 'lateral gap'). To do so, experiments were conducted for drilling holes on three advanced structural ceramics, namely, silicon carbide, zirconia, and alumina. Earlier published basic studies on the initiation of different crack modes and their growth characteristics are employed to explain the experimental findings in this USM study. It is realized that the radial and the lateral cracks formed due to adjacent abrasives, which are under the tool face, extends towards radial direction of the hole resulting in entrance chipping. Additionally, the angle penetration and the rolling actions of the abrasives, which are at the periphery of the tool, contribute to the entrance chipping. Later on, in the 'lateral gap', the sliding (or abrasion) and the rolling mechanisms by the larger abrasives take part to material removal. However, they unfavorably produce micro-cracks in the radial direction resulting in surface and subsurface damages, which are ultimately responsible for higher wall-surface roughness. Since the size of micro-cracks in brittle materials is grit size dependent according to the earlier studied physics, it is realized that such nature of the hole integrity during USM can only be minimized by employing smaller grit size, but cannot fully be eliminated. Copyright © 2012 Elsevier B.V. All rights reserved. This article was published in Ultrasonics and referenced in Global Journal of Technology and Optimization

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords