alexa Inhalable metal-rich air particles and histone H3K4 dimethylation and H3K9 acetylation in a cross-sectional study of steel workers.
Genetics & Molecular Biology

Genetics & Molecular Biology

Gene Technology

Author(s): Cantone L, Nordio F, Hou L, Apostoli P, Bonzini M,

Abstract Share this page

Abstract BACKGROUND: Epidemiology investigations have linked exposure to ambient and occupational air particulate matter (PM) with increased risk of lung cancer. PM contains carcinogenic and toxic metals, including arsenic and nickel, which have been shown in in vitro studies to induce histone modifications that activate gene expression by inducing open-chromatin states. Whether inhalation of metal components of PM induces histone modifications in human subjects is undetermined. OBJECTIVES: We investigated whether the metal components of PM determined activating histone modifications in 63 steel workers with well-characterized exposure to metal-rich PM. METHODS: We determined histone 3 lysine 4 dimethylation (H3K4me2) and histone 3 lysine 9 acetylation (H3K9ac) on histones from blood leukocytes. Exposure to inhalable metal components (aluminum, manganese, nickel, zinc, arsenic, lead, iron) and to total PM was estimated for each study subject. RESULTS: Both H3K4me2 and H3K9ac increased in association with years of employment in the plant (p-trend = 0.04 and 0.006, respectively). H3K4me2 increased in association with air levels of nickel [β = 0.16; 95\% confidence interval (CI), 0.03-0.3], arsenic (β = 0.16; 95\% CI, 0.02-0.3), and iron (β = 0.14; 95\% CI, 0.01-0.26). H3K9ac showed nonsignificant positive associations with air levels of nickel (β = 0.24; 95\% CI, -0.02 to 0.51), arsenic (β = 0.21; 95\% CI, -0.06 to 0.48), and iron (β = 0.22; 95\% CI, -0.03 to 0.47). Cumulative exposures to nickel and arsenic, defined as the product of years of employment by metal air levels, were positively correlated with both H3K4me2 (nickel: β = 0.16; 95\% CI, 0.01-0.3; arsenic: β = 0.16; 95\% CI, 0.03-0.29) and H3K9ac (nickel: β = 0.27; 95\% CI, 0.01-0.54; arsenic: β = 0.28; 95\% CI, 0.04-0.51). CONCLUSIONS: Our results indicate histone modifications as a novel epigenetic mechanism induced in human subjects by long-term exposure to inhalable nickel and arsenic.
This article was published in Environ Health Perspect and referenced in Gene Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd International Conference and Expo on Generic Drug Market and Contract Manufacturing
    September 25-26, 2017 Frankfurt, Germany
  • 6th International Conference and Exhibition on Cell and Gene Therapy
    Mar 27-28, 2017 Madrid, Spain
  • 2nd World Congress on Human Genetics & Genetic Disorders
    November 02-03, 2017 Toronto, Canada

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords