alexa Inhibition and inactivation of Listeria monocytogenes and Escherichia coli O157:H7 colony biofilms by micellar-encapsulated eugenol and carvacrol.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): PrezConesa D, McLandsborough L, Weiss J

Abstract Share this page

Abstract The antimicrobial efficacy of carvacrol and eugenol, two essential oil compounds, encapsulated in a micellar nonionic surfactant solution on four strains of Listeria monocytogenes (Scott A, 101, 108, and 310) and four strains of Escherichia coli O157:H7 (H1730, E0019, F4546, and 932) growing as colony biofilms was investigated. Carvacrol and eugenol were encapsulated in Surfynol 485W at concentrations ranging from 0.3 to 0.9\% (wt/wt) at a surfactant concentration of 5\% (wt/wt). Colony biofilms were grown on polycarbonate membranes resting on agar plates containing antimicrobial formulations. Cells were enumerated after 0, 3, 6, 9, 24, 48, and 72 h of incubation. Colony biofilms of all E. coli O157:H7 strains were more sensitive to both antimicrobial systems than L. monocytogenes strains. Surface-grown E. coli O157:H7 viable cell numbers decreased below detectable levels after exposure to encapsulated essential oil compounds for > 3 h at all tested concentrations, except for E. coli O157:H7 F4546, which grew slowly in the presence of < 0.5\% (wt/wt) eugenol. L. monocytogenes Scott A and 101 were more resistant to eugenol than carvacrol at sublethal concentrations (< 0.5\% [wt/wt]). Carvacrol was effective at any concentration against L. monocytogenes 108, whereas concentrations of > 0.5\% (wt/wt) eugenol were required for inactivation. L. monocytogenes 310 was equally sensitive to both essential oil compounds. Results suggest that surfactant-encapsulated generally recognized as safe essential oil compounds may offer a new means to control the growth of food pathogens such as E. coli O157:H7 and L. monocytogenes on food contact surfaces.
This article was published in J Food Prot and referenced in Journal of Nanomedicine & Nanotechnology

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords