alexa Inhibition of NADPH oxidase 4 activates apoptosis via the AKT apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular and Genetic Medicine

Author(s): Mochizuki T, Furuta S, Mitsushita J, Shang WH, Ito M,

Abstract Share this page

Abstract Pancreatic adenocarcinoma is an aggressive human malignancy and is characterized by resistance to apoptosis. Recently, NADPH oxidase (Nox) 4-mediated generation of intracellular reactive oxygen species (ROS) was proposed to confer antiapoptotic activity and thus a growth advantage to pancreatic cancer cells. The signaling mechanism by which Nox4 transmits cell survival signals remains unclear. Here, we show that both a flavoprotein inhibitor, diphenylene iodonium (DPI), and small interfering RNAs designed to target Nox4 mRNA (siNox4RNAs) inhibited superoxide production in PANC-1 pancreatic cancer cells, and depletion of ROS by DPI or siNox4RNAs induced apoptosis. Parallely, DPI treatment and siNox4RNA transfection blocked activation of the cell survival kinase AKT by attenuating phosphorylation of AKT. Furthermore, AKT phosphorylation of apoptosis signal-regulating kinase 1 (ASK1) on Ser-83 was reduced by DPI and siNox4RNAs. When ASK1Ser83Ala (an AKT phosphorylation-defective ASK1 mutant) was introduced into PANC-1 cells, this mutant alone induced apoptosis. But, addition of DPI or co-transfection of siNox4RNA had no additive effect, indicating that the mutant can substitute for these reagents in apoptosis induction. Taken together, these findings suggest that ROS generated by Nox4, at least in part, transmit cell survival signals through the AKT-ASK1 pathway in pancreatic cancer cells and their depletion leads to apoptosis. This article was published in Oncogene and referenced in Journal of Molecular and Genetic Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords