alexa Initial characterization of the transplant of immortalized chromaffin cells for the attenuation of chronic neuropathic pain.
General Science

General Science

Journal of Biotechnology & Biomaterials

Author(s): Eaton MJ, Martinez M, Karmally S, Lopez T, Sagen J

Abstract Share this page

Abstract Cultures of embryonic day 17 (E17) rat adrenal and neonatal bovine adrenal cells were conditionally immortalized with the temperature-sensitive allele of SV40 large T antigen (tsTag) and chromaffin cell lines established. Indicative of the adrenal chromaffin phenotype, these cells expressed immunoreactivity (ir) for tyrosine hydroxylase (TH), the first enzyme in the synthetic pathway for catecholamines. At permissive temperature in vitro (33 degrees C), these chromaffin cells are proliferative, have a typical rounded chromaffin-like morphology, and contain detectable TH-ir. At nonpermissive temperature in vitro (39 degrees C), these cells stop proliferating and express increased TH-ir. When these immortalized chromaffin cells were transplanted in the lumbar subarachnoid space of the spinal cord I week after a unilateral chronic constriction injury (CCI) of the rat sciatic nerve, they survived longer than 7 weeks on the pia mater around the spinal cord and continued to express TH-ir. Conversely, grafted chromaffin cells lost Tag-ir after transplant and Tag-ir was undetectible in the grafts after 7 weeks in the subarachnoid space. At no time did the grafts form tumors after transplant into the host animals. These grafted chromaffin cells also expressed immunoreactivities for the other catecholamine-synthesizing enzymes 7 weeks after grafting, including: dopamine-beta-hydroxylase (DbetaH) and phenylethanolamine-N-methyltransferase (PNMT). The grafted cells also expressed detectable immunoreactivities for the opioid met-enkephalin (ENK), the peptide galanin (GAL), and the neurotransmitters y-aminobutyric acid (GABA) and serotonin (5-HT). Furthermore, after transplantation, tactile and cold allodynia and tactile and thermal hyperalgesia induced by CCI were significantly reduced during a 2-8-week period, related to the chromaffin cell transplants. The maximal antinociceptive effect occurred 1-3 weeks after grafting. Control adrenal fibroblasts, similarly immortalized and similarly transplanted after CCI, did not express any of the chromaffin antigenic markers, and fibroblast grafts had no effect on the allodynia and hyperalgesia induced by CCI. These data suggest that embryonic and neonatal chromaffin cells can be conditionally immortalized and will continue to express the phenotype of primary chromaffin cells in vitro and in vivo; grafted cells will ameliorate neuropathic pain after nerve injury and can be used as a homogeneous source to examine the mechanisms by which chromaffin transplants reverse chronic pain. The use of such chromaffin cell lines that are able to deliver antinociceptive molecules in models of chronic pain after nerve and spinal cord injury (SCI) offers a novel approach to pain management.
This article was published in Cell Transplant and referenced in Journal of Biotechnology & Biomaterials

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords