alexa Inorganic phosphate regulates multiple genes during osteoblast differentiation, including Nrf2.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Beck GR Jr, Moran E, Knecht N

Abstract Share this page

Abstract The process of osteoblast differentiation and matrix mineralization requires a rise in alkaline phosphatase enzymatic activity resulting in the generation of free phosphate. The ability of inorganic phosphate to regulate gene transcription and cellular function represents a potentially novel extracellular signaling mechanism. Using microarray analysis we have identified a discrete set of genes that are either positively or negatively regulated by increased phosphate in MC3T3-E1 cells. The genes downregulated by phosphate encode for osteoblast-related extracellular factors such as collagens, periostin, and decorin. The genes increased by phosphate encode a novel group of transcription factors that may be important in the later stages of osteoblast development in which the environment is high in phosphate. The transcription factor Nrf2 is one such gene. Elevated phosphate levels stimulate an increase in Nrf2 RNA that is not blocked by the translation inhibitor cycloheximide, suggesting that Nrf2 is an immediate response gene. Cloning of the murine nrf2 promoter reveals that elevated phosphate produces an increase in promoter activity that is both time and dose dependent. This analysis reveals multiple genes regulated by the increase in phosphate associated with osteoblast differentiation, adding to our understanding of the intricate communication between osteoblasts and their extracellular environment.
This article was published in Exp Cell Res and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords