alexa Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG.


Journal of Neurological Disorders

Author(s): Shibutani S, Takeshita M, Grollman AP

Abstract Share this page

Abstract Oxidative damage to DNA, reflected in the formation of 8-oxo-7-hydrodeoxyguanosine (8-oxodG), may be important in mutagenesis, carcinogenesis and the ageing process. Kuchino et al. studied DNA synthesis on oligodeoxynucleotide templates containing 8-oxodG, concluding that the modified base lacked base pairing specificity and directed misreading of pyrimidine residues neighbouring the lesion. Here we report different results, using an approach in which the several products of a DNA polymerase reaction can be measured. In contrast to the earlier report, we find that dCMP and dAMP are incorporated selectively opposite 8-oxodG with transient inhibition of chain extension occurring 3' to the modified base. The potentially mutagenic insertion of dAMP is targeted exclusively to the site of the lesion. The ratio of dCMP to dAMP incorporated varies, depending on the DNA polymerase involved. Chain extension from the dA.8-oxodG pair was efficiently catalysed by all polymerases tested. This article was published in Nature and referenced in Journal of Neurological Disorders

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version