alexa Insights into the mechanism of binding of arachidonic acid to mammalian 15-lipoxygenases.
Immunology

Immunology

Journal of Cytokine Biology

Author(s): Toledo L, Masgrau L, Marchal JD, Lluch JM, GonzlezLafont A

Abstract Share this page

Abstract Mammalian 15-lipoxygenases (15-LOs) are key pharmaceutical targets under strong investigation because of their implication in atherosclerosis and cancer. Here, we present an atomic-level study of the binding modes of arachidonic acid (AA) to rabbit reticulocyte 15-LO, with a particular insight into the 15-LO:AA complexes consistent with known catalytic activity. We take into account both ligand and protein flexibility, by combining protein-ligand docking techniques and molecular dynamics simulations. We have also performed in silico mutagenesis. Our results are in agreement with previous mutagenesis data, in particular with the importance of Arg403 on AA binding. Interestingly, our results also reveal a central role of Arg403 in the conformational change of the alpha2-helix observed upon ligand binding. That induced-fit effect could give a possible framework for the molecular explanation of the known allosteric effect and questions the suitability of the inhibitor-bound crystal structure for accepting AA. Accounting for these dynamical considerations might improve the drug design process. This article was published in J Phys Chem B and referenced in Journal of Cytokine Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version