alexa Institute for Problems of Information Transmission
Mathematics

Mathematics

Journal of Generalized Lie Theory and Applications

Author(s): Dimitri Gurevich, Pavel Saponov

Abstract Share this page

We suggest a method to quantize basic wave operators of Relativistic Quantum Mechanics (Laplace, Maxwell, Dirac ones) without using canonical coordinates. We define two-parameter deformations of the Minkowski space algebra and its 3-dimensional reduction via the so-called Reflection Equation Algebra and its modified version. Wave operators on these algebras are introduced by means of quantized partial derivatives described in two ways. In particular, they are given in so-called pseudospherical form which makes use of a q-deformation of the Lie algebra sl(2) and quantum versions of the Cayley-Hamilton identity.

This article was published in Institute for Problems of Information Transmission and referenced in Journal of Generalized Lie Theory and Applications

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords