alexa Insulin dose-response curves for stimulation of splanchnic glucose uptake and suppression of endogenous glucose production differ in nondiabetic humans and are abnormal in people with type 2 diabetes.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Basu R, Basu A, Johnson CM, Schwenk WF, Rizza RA

Abstract Share this page

Abstract To determine whether the insulin dose-response curves for suppression of endogenous glucose production (EGP) and stimulation of splanchnic glucose uptake (SGU) differ in nondiabetic humans and are abnormal in type 2 diabetes, 14 nondiabetic and 12 diabetic subjects were studied. Glucose was clamped at approximately 9.5 mmol/l and endogenous hormone secretion inhibited by somatostatin, while glucagon and growth hormone were replaced by an exogenous infusion. Insulin was progressively increased from approximately 150 to approximately 350 and approximately 700 pmol/l by means of an exogenous insulin infusion, while EGP, SGU, and leg glucose uptake (LGU) were measured using the splanchnic and leg catheterization methods, combined with a [3-3H]glucose infusion. In nondiabetic subjects, an increase in insulin from approximately 150 to approximately 350 pmol/l resulted in maximal suppression of EGP, whereas SGU continued to increase (P < 0.001) when insulin was increased to approximately 700 pmol/l. In contrast, EGP progressively decreased (P < 0.001) and SGU progressively increased (P < 0.001) in the diabetic subjects as insulin increased from approximately 150 to approximately 700 pmol/l. Although EGP was higher (P < 0.01) in the diabetic than nondiabetic subjects only at the lowest insulin concentration, SGU was lower (P < 0.01) in the diabetic subjects at all insulin concentrations tested. On the other hand, in contrast to LGU and overall glucose disposal, the increment in SGU in response to both increments in insulin did not differ in the diabetic and nondiabetic subjects, implying a right shifted but parallel dose-response curve. These data indicate that the dose-response curves for suppression of glucose production and stimulation of glucose uptake differ in nondiabetic subjects and are abnormal in people with type 2 diabetes. Taken together, these data also suggest that agents that enhance SGU in diabetic patients (e.g. glucokinase activators) are likely to improve glucose tolerance.
This article was published in Diabetes and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords