alexa Insulin redirects differentiation from cardiogenic mesoderm and endoderm to neuroectoderm in differentiating human embryonic stem cells.
Cardiology

Cardiology

Journal of Clinical & Experimental Cardiology

Author(s): Freund C, Wardvan Oostwaard D, MonshouwerKloots J, van den Brink S, van Rooijen M,

Abstract Share this page

Abstract Human embryonic stem cells (hESC) can proliferate indefinitely while retaining the capacity to form derivatives of all three germ layers. We have reported previously that hESC differentiate into cardiomyocytes when cocultured with a visceral endoderm-like cell line (END-2). Insulin/insulin-like growth factors and their intracellular downstream target protein kinase Akt are known to protect many cell types from apoptosis and to promote proliferation, including hESC-derived cardiomyocytes. Here, we show that in the absence of insulin, a threefold increase in the number of beating areas was observed in hESC/END-2 coculture. In agreement, the addition of insulin strongly inhibited cardiac differentiation, as evidenced by a significant reduction in beating areas, as well as in alpha-actinin and beta-myosin heavy chain (beta-MHC)-expressing cells. Real-time reverse transcription-polymerase chain reaction and Western blot analysis showed that insulin inhibited cardiomyogenesis in the early phase of coculture by suppressing the expression of endoderm (Foxa2, GATA-6), mesoderm (brachyury T), and cardiac mesoderm (Nkx2.5, GATA-4). In contrast to previous reports, insulin was not sufficient to maintain hESC in an undifferentiated state, since expression of the pluripotency markers Oct3/4 and nanog declined independently of the presence of insulin during coculture. Instead, insulin promoted the expression of neuroectodermal markers. Since insulin triggered sustained phosphorylation of Akt in hESC, we analyzed the effect of an Akt inhibitor during coculture. Indeed, the inhibition of Akt or insulin-like growth factor-1 receptor reversed the insulin-dependent effects. We conclude that in hESC/END-2 cocultures, insulin does not prevent differentiation but favors the neuroectodermal lineage at the expense of mesendodermal lineages. This article was published in Stem Cells and referenced in Journal of Clinical & Experimental Cardiology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords