alexa Int6 eIF3e silencing promotes functional blood vessel outgrowth and enhances wound healing by upregulating hypoxia-induced factor 2alpha expression.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Genetic Syndromes & Gene Therapy

Author(s): Chen L, Endler A, Uchida K, Horiguchi S, Morizane Y,

Abstract Share this page

Abstract BACKGROUND: We previously identified INT6/eIF3e as a novel regulator of hypoxia-inducible factor 2alpha (HIF2alpha) activity. Small interfering RNA (siRNA)-Int6 adequately stabilized HIF2alpha, even under normoxic conditions, and thereby enhanced the expression of several angiogenic factors in vitro, suggesting that siRNA-Int6 may induce angiogenesis in vivo. METHODS AND RESULTS: We demonstrated a 6- to 8-fold enhanced formation of normal arteries and veins in the subcutaneous regions of adult mice 5 days after a single siRNA-Int6 application. Subcutaneous fibroblasts were identified as the major source of secreted angiogenic factors that led to the formation of functional vessels during Int6 silencing. Fibroblasts transfected ex vivo with siRNA-Int6 induced potent neoangiogenesis when transplanted into a subcutaneous region of nude mice. Application of siRNA-Int6 promoted neoangiogenesis in the area surrounding the injury in wound healing models, including genetically diabetic mice, thereby accelerating the closure of the injury. HIF2alpha accumulation caused by siRNA-Int6 was confirmed as the unequivocal cause of the angiogenesis by an in vivo angiogenesis assay. Further analysis of the Int6 silencing-induced neoangiogenesis revealed that a negative feedback regulation of HIF2alpha stability was caused by HIF2alpha-induced transcription of Int6 via hypoxia-response elements in its promoter. Thus, siRNA-Int6 temporarily facilitates an accumulation of HIF2alpha protein, leading to hypoxia-independent transcription of angiogenic factors and concomitant neoangiogenesis. CONCLUSIONS: We suggest that the pathway involving INT6/HIF2alpha acts as a hypoxia-independent master switch of functional angiogenesis; therefore, siRNA-Int6 application might be of clinical value in treating ischemic diseases such as heart and brain ischemia, skin injury, and diseases involving obstructed vessels. This article was published in Circulation and referenced in Journal of Genetic Syndromes & Gene Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version