alexa Integration of mixing, heat transfer, and biochemical reaction kinetics in anaerobic methane fermentation.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Wu B

Abstract Share this page

Abstract An extensive investigation of anaerobic methane fermentation requires identifying the relationship between the physical environment and biological process. In this study, a computational fluid dynamics (CFD) technique was used to characterize bacterial fermentation mechanisms intertwined with mixing and heat transfer in anaerobic digesters. The results demonstrate that the methane yield remains almost unchanged while the energy efficiency decreases with increasing mixing power in a complete-mix digester, and that the energy output increases nonlinearly with the increase in heating energy in a plug-flow digester. The CFD method can be applied to other bioreactors to gain valuable insights into their behavior as well. Integrating flow and temperature with kinetic behavior for anaerobic digestion not only solves the controversy about how mixing influences the digestive process, but also assists in optimizing the digester design and increasing the efficiency of energy conversion, and additionally, provides a reference for improving the mixing guidelines recommended by the U.S. Environmental Protection Agency. Copyright © 2012 Wiley Periodicals, Inc. This article was published in Biotechnol Bioeng and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version