alexa Interaction between flicker-induced vasodilatation and pressure autoregulation in early retinopathy of Type 2 diabetes
Ophthalmology

Ophthalmology

Journal of Clinical & Experimental Ophthalmology

Author(s): Bek T, Hajari J, Jeppesen P

Abstract Share this page

Background Diabetic retinopathy is accompanied with changes in the autoregulation of retinal blood flow secondary to changes in the systemic blood pressure and the retinal metabolism. In the present study we tested the working hypothesis that there is an interaction between these mechanisms that might be relevant for understanding and treating flow disturbances in diabetic retinopathy. Methods Fifty-four persons divided into three age and sex matched groups were studied: Group 1: twenty normal persons. Group 2: fourteen patients with type 2 diabetes mellitus and no diabetic retinopathy. Group 3: twenty type 2 diabetic patients with minimal diabetic retinopathy and a diabetes duration similar to that of the patients in group 2. Using the Retinal Vessel Analyzer (RVA) the diameter response of retinal arterioles was studied in all groups after an increase in the blood pressure by isometric exercise, during exposition to 8 Hz flickering light, and during simultaneous exposition to both stimulus conditions. Results The increased blood pressure induced by isometric exercise induced a non-significant vasoconstriction in the normal persons and in the diabetic patients without retinopathy (p = 0.10 and p = 0.84 respectively), and a non-significant vasodilatation in the diabetic patients with mild retinopathy (p = 0.10). The flicker stimulus elicited a significant vasodilatation of retinal arterioles that decreased significantly from the normal persons to the diabetic patients without and with retinopathy (linear regression, p < 0.01). The flicker-induced vasodilatation was not significantly affected by a simultaneous increase in the arterial blood pressure in normal persons (p = 0.85). Conversely, in the diabetic patients the reduced diameter response during flicker was counteracted by a simultaneous increase in the blood pressure, to a level not differing significantly from the response of normal persons (p = 0.75). Conclusions Intervention studies aimed at modifying perfusion in retinal disease should consider the interaction between different mechanisms for autoregulating retinal blood flow. New treatment modalities for retinal vascular disease might need to target several mechanisms of tone control in retinal arterioles simultaneously.

This article was published in Graefe's Archive for Clinical and Experimental Ophthalmology and referenced in Journal of Clinical & Experimental Ophthalmology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords