alexa Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion.
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): Wu M, PastorPareja JC, Xu T

Abstract Share this page

Abstract Human tumours have a large degree of cellular and genetic heterogeneity. Complex cell interactions in the tumour and its microenvironment are thought to have an important role in tumorigenesis and cancer progression. Furthermore, cooperation between oncogenic genetic lesions is required for tumour development; however, it is not known how cell interactions contribute to oncogenic cooperation. The genetic techniques available in the fruitfly Drosophila melanogaster allow analysis of the behaviour of cells with distinct mutations, making this the ideal model organism with which to study cell interactions and oncogenic cooperation. In Drosophila eye-antennal discs, cooperation between the oncogenic protein Ras(V12) (ref. 5) and loss-of-function mutations in the conserved tumour suppressor scribbled (scrib) gives rise to metastatic tumours that display many characteristics observed in human cancers. Here we show that clones of cells bearing different mutations can cooperate to promote tumour growth and invasion in Drosophila. We found that the Ras(V12) and scrib(-) mutations can also cause tumours when they affect different adjacent epithelial cells. We show that this interaction between Ras(V12) and scrib(-) clones involves JNK signalling propagation and JNK-induced upregulation of JAK/STAT-activating cytokines, a compensatory growth mechanism for tissue homeostasis. The development of Ras(V12) tumours can also be triggered by tissue damage, a stress condition that activates JNK signalling. Given the conservation of the pathways examined here, similar cooperative mechanisms could have a role in the development of human cancers.
This article was published in Nature and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

  • Hedef Dhafir El-Yassin
    The Immune Response of Prolactin and the Induction of Tumor Necrosis Factor (TNF) in Iraqi Patients Infected with Hepatitis C Virus
    PPT Version | PDF Version
  • Moshe Giladi
    Tumor Treating Fields (TTFields) induced cancer cell death may be immunogenic resulting in enhanced antitumor efficacy when combined with immune-modulating therapy
    PPT Version | PDF Version
  • M Shahnawaz Khan
    Graphene Oxide @ Gold Nanorods Conjugate for Controlled Release of Doxorubicin in tumor
    PPT Version | PDF Version
  • Omar E Franco
    Heterogeneous Tumor Stroma and Prostate Carcinogenesis
    PPT Version | PDF Version
  • Yen-Chein Lai
    Molecular pathogenesis in granulosa cell tumor is not only due to somatic FOXL2 mutation
    PPT Version | PDF Version
  • Babak Behnam
    SLUG and SOX9 Cooperatively Regulate Tumor Initiating Niche Factors in Breast Cancer
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Fan-Gang Tseng
    Fan-Gang-Tseng-National-Tsing-Hua-University-Taiwan-Nano-Micro-fluidic-systems-for-circulating-Tumor-Cells-(CTCs)-rapid-detection-and-diagnosis
    PPT Version | PDF Version
  • Myron R Szewczuk
    Therapeutic targeting neuraminidase-1 in multi-stage of tumorigenesis
    PPT Version | PDF Version
  • Hawa ZE Jaafar
    Involvement of elicitated Labisia pumila Benth. biofluids in the alleviation of chemotoxicity effect and antitumor activity
    PPT Version | PDF Version
  • Huidi Liu
    Reduced Expression of SOX7 in Ovarian Cancer: a Novel Tumor Suppressor through the Wnt/β-catenin Signaling Pathway
    PPT Version | PDF Version
  • Alex Soltermann
    Lung neuroendocrine tumors: Correlation of ubiquitinylation and sumoylation with nucleo-cytosolic partitioning of PTEN
    PPT Version | PDF Version
  • Mohamed Hamdy Ibrahim
    Prevalence of venous sinus stenosis in Pseudo Tumor Cerebri (PTC) using Digital Subtraction Angiography (DSA)
    PPT Version | PDF Version
  • K Ludwig
    Targeting microtentacles on circulating breast tumor cells to reduce metastasis
    PPT Version | PDF Version
  • Paul A Beavis
    Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced anti-tumor T cell responses
    PPT Version | PDF Version

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords