alexa Interaction of natural polyphenols with α-amylase in vitro: molecular property-affinity relationship aspect.
Oncology

Oncology

Chemotherapy: Open Access

Author(s): Xiao J, Kai G, Ni X, Yang F, Chen X

Abstract Share this page

Abstract The relationship between the structural properties of natural polyphenols and their affinities for α-amylase were investigated by fluorescence titration analysis. The binding process with α-amylase was strongly influenced by the structural differences of the compounds under study. For instance, the methylation of the hydroxyl group in flavonoids increased their binding affinities for α-amylase by 2.14 to 7.76 times. The hydroxylation on rings A, B, and C of flavonoids also significantly affected their affinities for α-amylase. The glycosylation of isoflavones and flavanones reduced their affinities for α-amylase and the glycosylation of flavones and flavonols enhanced their affinities for α-amylase. Hydrogenation of the C2=C3 double bond of flavonoids decreased the binding affinities. The galloylated catechins had higher binding affinities with α-amylase than non-galloylated catechins and the pyrogallol-type catechins had higher affinities than the catechol-type catechins. The presence of the galloyl moiety is the most decisive factor. The glycosylation of resveratrol decreased its affinity for α-amylase. The esterification of gallic acid significantly reduced the affinity for α-amylase. The binding interaction between polyphenols and α-amylase was mainly caused by hydrophobic forces. This article was published in Mol Biosyst and referenced in Chemotherapy: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords