alexa Interfacial Behavior of Triblock Copolymers at Hydrophilic Surfaces.
Biochemistry

Biochemistry

Journal of Membrane Science & Technology

Author(s): Eskilsson K, Tiberg F

Abstract Share this page

Abstract We report on the adsorption of a series of poly(ethylene oxide)-polytetrahydrofuran-poly(ethylene oxide) copolymers, EOn/2THFmEOn/2, at hydrophilic silica surfaces and relate our findings to the corresponding behavior at hydrophobic surfaces. The adsorption of these copolymers is similar to that of poly(ethylene oxide) homopolymers at low bulk concentrations. However, the copolymer adsorption increases strongly above a certain threshold concentration. This increase, which begins more than 1 order of magnitude below the critical micellar concentration (cmc), is related to the concomitant formation of micellar-like structures at the hydrophilic surfaces. We show in this work that a commercial (ethylene oxide-propylene oxide-ethylene oxide) triblock copolymer, Pluronic F127, exhibits a similar behavior at silica. Due to surface aggregation, much thicker layers are measured on silica than at the hydrophobic surface, where the adsorption results in the formation of a monolayer structure. The adsorbed amount and layer thickness measured on bare silica tend to decrease when the bulk concentration is raised above the cmc. We infer that this is due to changes of the molecular weight distribution and relative block sizes of the copolymers in the surface aggregates, i.e., a polydispersity effect. This study also covers some aspects of the adsorption and desorption kinetics exhibited by the copolymers at silica. As is common for adsorbing polymers, the concentration dependent adsorption process is generally observed to be much faster than the desorption process. The adsorption process is in parts diffusion controlled but overall to a complex to be fully analyzed. During adsorption from solutions with bulk concentrations exceeding the cmc, a clear overshoot of the surface excess is observed after intermediate adsorption times. Again, this is interpreted as being due to polydispersity. Finally, after an initial rapid desorption regime, the surface excess exhibits a logarithmic decay with time during desorption. This article was published in Macromolecules and referenced in Journal of Membrane Science & Technology

Relevant Expert PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords