alexa Interior segment regrowth configurational-bias algorithm for the efficient sampling and fast relaxation of coarse-grained polyethylene and polyoxyethylene melts on a high coordination lattice.
Mathematics

Mathematics

Journal of Applied & Computational Mathematics

Author(s): Rane SS, Mattice WL

Abstract Share this page

Abstract We demonstrate the application of a modified form of the configurational-bias algorithm for the simulation of chain molecules on the second-nearest-neighbor-diamond lattice. Using polyethylene and poly(ethylene-oxide) as model systems we show that the present configurational-bias algorithm can increase the speed of the equilibration by at least a factor of 2-3 or more as compared to the previous method of using a combination of single-bead and pivot moves along with the Metropolis sampling scheme [N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953)]. The increase in the speed of the equilibration is found to be dependent on the interactions (i.e., the polymer being simulated) and the molecular weight of the chains. In addition, other factors not considered, such as the density, would also have a significant effect. The algorithm is an extension of the conventional configurational-bias method adapted to the regrowth of interior segments of chain molecules. Appropriate biasing probabilities for the trial moves as outlined by Jain and de Pablo for the configurational-bias scheme of chain ends, suitably modified for the interior segments, are utilized [T. S. Jain and J. J. de Pablo, in Simulation Methods for Polymers, edited by M. Kotelyanskii and D. N. Theodorou (Marcel Dekker, New York, 2004), pp. 223-255]. The biasing scheme satisfies the condition of detailed balance and produces efficient sampling with the correct equilibrium probability distribution of states. The method of interior regrowth overcomes the limitations of the original configurational-bias scheme and allows for the simulation of polymers of higher molecular weight linear chains and ring polymers which lack chain ends. This article was published in J Chem Phys and referenced in Journal of Applied & Computational Mathematics

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords