alexa Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities.
Immunology

Immunology

Journal of Clinical & Cellular Immunology

Author(s): Smith PD, Smythies LE, MostellerBarnum M, Sibley DA, Russell MW,

Abstract Share this page

Abstract The intestinal mucosa normally displays minimal inflammation despite the close proximity between mucosal macrophages and lumenal bacteria. Macrophages interact with bacteria and their products through CD14, a surface receptor involved in the response to LPS, and CD89, the receptor for IgA (FcalphaR). Here we show that resident macrophages isolated from normal human intestine lack CD14 and CD89. The absence of CD14 and CD89 was not due to the isolation procedure or mucosal cell products, but was evident at the transcriptional level, as the macrophages expressed neither CD14- nor CD89-specific mRNAs, but did express Toll-like receptor 2 and 4 transcripts. Consistent with their CD14(-) phenotype, lamina propria macrophages displayed markedly reduced LPS-induced cytokine production and LPS-enhanced phagocytosis. In addition, IgA-enhanced phagocytosis was sharply reduced in lamina propria macrophages. Thus, the absence of CD14 and CD89 on resident intestinal macrophages, due to down-regulated gene transcription, causes down-modulated LPS- and IgA-mediated functions and probably contributes to the low level of inflammation in normal human intestinal mucosa.
This article was published in J Immunol and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords