alexa Intracellular calcium responses in bovine oocytes induced by spermatozoa and by reagents.
Genetics & Molecular Biology

Genetics & Molecular Biology

Human Genetics & Embryology

Author(s): Nakada K, Mizuno J

Abstract Share this page

Abstract The objectives of the present study were to clarify and compare the characteristics of the transient rises in intracellular calcium concentrations ([Ca2+]i) induced either by spermatozoa or by stimulation with artificial activators in bovine oocytes. These transient rises in [Ca2+]i in oocytes matured in vitro were recorded with Ca2+ imaging using the Ca2+ indicator fura-2. During fertilization, a series of transient rises in [Ca2+]i was observed. The first Ca2+ response peaked at a concentration of 521 +/- 39 nM (n = 20) and lasted for 4 min, while the subsequent Ca2+ responses were significantly smaller and shorter, with a peak of 368 +/- 13 nM (n = 23) and a duration of 2 min. Injection of inositol 1,4,5- triphosphate (InsP3) into unfertilized oocytes caused a transient rise in [Ca2+]i in a dose-dependent manner. The maximum response was induced by 20 nA x 1 sec injection of InsP3. Thimerosal, a sulfhydryl reagent, induced the repetitive transient rises in [Ca2+]i. The peak and the duration of the rises in [Ca2+]i induced by InsP3 or thimerosal were smaller and shorter, respectively, than those of the first rise induced by spermatozoa. Ethanol and Ca2+ ionophore IA23187, which are general parthenogenetic activators of unfertilized oocytes, each induced a single transient rise in [Ca2+]i. The duration of the rise in [Ca2+]i by ethanol or Ca2+ ionophore was significantly longer than that by spermatozoa at fertilization, although the peaks were smaller. These results clarified the characteristics of the rises in [Ca2+]i induced by spermatozoa and by several artificial reagents, and showed that the first rise in [Ca2+]i induced by spermatozoa had a higher peak [Ca2+]i and a longer duration compared with each the subsequent rises in [Ca2+]i and the rises in [Ca2+]i induced by artificial reagents. These indicate that a mode like as the first rise in [Ca2+]i induced by spermatozoa is an effective trigger for artificial activation of oocytes.
This article was published in Theriogenology and referenced in Human Genetics & Embryology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords