alexa Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases.


Anatomy & Physiology: Current Research

Author(s): Cauwe B, Opdenakker G

Abstract Share this page

Abstract Matrix metalloproteinases (MMPs), originally discovered to function in the breakdown of extracellular matrix proteins, have gained the status of regulatory proteases in signaling events by liganding and processing hormones, cytokines, chemokines, adhesion molecules and other membrane receptors. However, MMPs also cleave intracellular substrates and have been demonstrated within cells in nuclear, mitochondrial, various vesicular and cytoplasmic compartments, including the cytoskeletal intracellular matrix. Unbiased high-throughput degradomics approaches have demonstrated that many intracellular proteins are cleaved by MMPs, including apoptotic regulators, signal transducers, molecular chaperones, cytoskeletal proteins, systemic autoantigens, enzymes in carbohydrate metabolism and protein biosynthesis, transcriptional and translational regulators, and proteins in charge of protein clearance such as lysosomal and ubiquitination enzymes. Besides proteolysis inside cells, intracellular proteins may also be modulated by MMPs in the extracellular milieu. Indeed, many intracellular proteins exit cells by non-classical secretion mechanisms or by various conditions of cell death by apoptosis, necrosis and NETosis, and become accessible to extracellular proteases. Intracellular substrate proteolysis by MMPs is involved in innate immune defense and apoptosis, and affects oncogenesis and pathology of cardiac, neurological, protein conformational and autoimmune diseases, including ischemia-reperfusion injury, cardiomyopathy, Parkinson's disease, cataract, multiple sclerosis and systemic lupus erythematosus. Since the same MMP may affect physiology and pathology in different and even opposite ways, depending on its extracellular or subcellular localization, an additional layer of complexity is added to therapeutic MMP inhibition. Hence, further elucidation of intracellular MMP localizations and intracellular substrate proteolysis is a new challenge in MMP research. This article was published in Crit Rev Biochem Mol Biol and referenced in Anatomy & Physiology: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version