alexa Intracerebral Administration of S-Adenosylhomocysteine or S-Adenosylmethionine Attenuates the Increases in the Cortical Extracellular Levels of Dimethylarginines Without Affecting cGMP Level in Rats with Acute Liver Failure.
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutica Analytica Acta

Author(s): Czarnecka A, Milewski K, Jawiec R, Zieliska M

Abstract Share this page

Abstract Alterations in brain nitric oxide (NO)/cGMP synthesis contribute to the pathogenesis of hepatic encephalopathy (HE). An increased asymmetrically dimethylated derivative of L-arginine (ADMA), an endogenous inhibitor of NO synthases, was observed in plasma of HE patients and animal models. It is not clear whether changes in brain ADMA reflect its increased local synthesis therefore affecting NO/cGMP pathway, or are a consequence of its increased peripheral blood content. We measured extracellular concentration of ADMA and symmetrically dimethylated isoform (SDMA) in the prefrontal cortex of control and thioacetamide (TAA)-induced HE rats. A contribution of locally synthesized dimethylarginines (DMAs) in their extracellular level in the brain was studied after direct infusion of the inhibitor of DMAs synthesizing enzymes (PRMTs), S-adenosylhomocysteine (AdoHcy, 2 mM), or the methyl donor, S-adenosylmethionine (AdoMet, 2 mM), via a microdialysis probe. Next, we analyzed whether locally synthesized ADMA attains physiological significance by determination of extracellular cGMP. The expression of PRMT-1 was also examined. Concentration of ADMA and SDMA, detected by positive mode electrospray LC-DMS-MS/MS, was greatly enhanced in TAA rats and was decreased (by 30 \%) after AdoHcy and AdoMet infusion. TAA-induced increase (by 40 \%) in cGMP was unaffected after AdoHcy administration. The expression of PRMT-1 in TAA rat brain was unaltered. The results suggest that (i) the TAA-induced increase in extracellular DMAs may result from their effective synthesis in the brain, and (ii) the excess of extracellular ADMA does not translate into changes in the extracellular cGMP concentration and implicate a minor role in brain NO/cGMP pathway control. This article was published in Neurotox Res and referenced in Pharmaceutica Analytica Acta

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version