alexa Intrathecal application of neuroectodermally converted stem cells into a mouse model of ALS: limited intraparenchymal migration and survival narrows therapeutic effects.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Habisch HJ, Janowski M, Binder D, KuzmaKozakiewicz M, Widmann A,

Abstract Share this page

Abstract Stem and progenitor cells provide a promising therapeutic strategy for amyotrophic lateral sclerosis (ALS). To comparatively evaluate the therapeutic potentials of human bone marrow-derived mesodermal stromal cells (hMSCs) and umbilical cord blood cells (hUBCs) in ALS, we transplanted hMSCs and hUBCs and their neuroectodermal derivatives (hMSC-NSCs and hUBC-NSCs) into the ALS mouse model over-expressing the G93A mutant of the human SOD1 gene. We used a standardized protocol similar to clinical studies by performing a power calculation to estimate sample size prior to transplantation, matching the treatment groups for gender and hSOD-G93A gene content, and applying a novel method for directly injecting 100,000 cells into the CSF (the cisterna magna). Ten days after transplantation we found many cells within the subarachnoidal space ranging from frontal basal cisterns back to the cisterna magna, but only a few cells around the spinal cord. hMSCs and hMSC-NSCs were also located within the Purkinje cell layer. Intrathecal cell application did not affect survival times of mice compared to controls. Consistently, time of disease onset and first pareses, death weight, and motor neuron count in lumbar spinal cord did not vary between treatment groups. Interestingly, transplantation of hMSCs led to an increase of pre-symptomatic motor performance compared to controls in female animals. The negative outcome of the present study is most likely due to insufficient cell numbers within the affected brain regions (mainly the spinal cord). Further experiments defining the optimal cell dose, time point and route of application and particularly strategies to improve the homing of transplanted cells towards the CNS region of interest are warranted to define the therapeutic potential of mesodermal stem cells for the treatment of ALS. This article was published in J Neural Transm (Vienna) and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords