alexa Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis.


Journal of Clinical & Cellular Immunology

Author(s): McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P

Abstract Share this page

Abstract During the systemic inflammatory response of severe sepsis, neutrophils accumulate in the liver microcirculation, but their functional significance is largely unknown. We show that neutrophils migrate to liver sinusoids during endotoxemia and sepsis where they exert protective effects by releasing neutrophil extracellular traps (NETs), which are DNA-based structures that capture and eliminate microbes. NETs released into the vasculature ensnare bacteria from the bloodstream and prevent dissemination. NET production requires platelet-neutrophil interactions and can be inhibited by platelet depletion or disruption of integrin-mediated platelet-neutrophil binding. During sepsis, NET release increases bacterial trapping by 4-fold (beyond the basal level provided by resident intravascular macrophages). Blocking NET formation reduces the capture of circulating bacteria during sepsis, resulting in increased dissemination to distant organs. Thus, NETs ensnare circulating bacteria and provide intravascular immunity that protects against bacterial dissemination during septic infections. Copyright © 2012 Elsevier Inc. All rights reserved. This article was published in Cell Host Microbe and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version