alexa Intrinsic capacities of soil microflorae for gasoline degradation.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): SolanoSerena F, Marchal R, Blanchet D, Vandecasteele JP

Abstract Share this page

Abstract A methodology to determine the intrinsic capacities of a microflora to degrade gasoline was developed, in particular for assessing the potential of autochtonous populations of polluted and non polluted soils for natural attenuation and engineered bioremediation. A model mixture (GM23) constituted of the 23 most representative hydrocarbons of a commercial gasoline was used. The capacities of the microflorae (kinetics and extent of biodegradation) were assessed by chromatographic analysis of hydrocarbon consumption and of CO2 production. The degradation of the components of GM23 was assayed in separate incubations of each component and in the complete mixture. For the microflora of an unpolluted spruce forest soil, all hydrocarbons of GM23 except cyclohexane, 2,2,4- and 2,3,4-trimethylpentane isomers were degraded to below detection limit in 28 days. This microflora was reinforced with two mixed microbial communities selected from gasoline-polluted sites and shown to degrade cyclohexane and 2,2,4-trimethylpentane. With the reinforced microflora, complete degradation of GM23 was observed. The degradation patterns of individual components of GM23 were similar when the compounds were present individually or in the GM23 mixture, as long as the concentrations of 2-ethyltoluene and trimethylbenzene isomers were kept sufficiently low (< or = 35 mg.l-1) to remain below their inhibitory level.
This article was published in Biodegradation and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 7th International Conference and Exhibition on Biopolymers and Bioplastics
    October 19-21, 2017 San Francisco, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords