alexa Intrinsic chiral properties of the Xenopus egg cortex: an early indicator of left-right asymmetry?
General Science

General Science

Biological Systems: Open Access

Author(s): Danilchik MV, Brown EE, Riegert K

Abstract Share this page

Abstract Vertebrate embryos define an anatomic plane of bilateral symmetry by establishing rudimentary anteroposterior and dorsoventral (DV) axes. A left-right (LR) axis also emerges, presaging eventual morphological asymmetries of the heart and other viscera. In the radially symmetric egg of Xenopus laevis, the earliest steps in DV axis determination are driven by microtubule-dependent localization of maternal components toward the prospective dorsal side. LR axis determination is linked in time to this DV-determining process, but the earliest steps are unclear. Significantly, no cytoskeletal polarization has been identified in early embryos capable of lateral displacement of maternal components. Cleaving Xenopus embryos and parthenogenetically activated eggs treated with 2,3-butanedione monoxime (BDM) undergo a dramatic large-scale torsion, with the cortex of the animal hemisphere shearing in an exclusively counterclockwise direction past the vegetal cortex. Long actin fibers develop in a shear zone paralleling the equator. Drug experiments indicate that the actin is not organized by microtubules, and depends on the reorganization of preexisting f-actin fibers rather than new actin polymerization. The invariant chirality of this drug response suggests a maternally inherited, microfilament-dependent organization within the egg cortex that could play an early role in LR axis determination during the first cell cycle. Consistent with this hypothesis, brief disruption of cortical actin during the first cell cycle randomizes the LR orientation of tadpole heart and gut. This article was published in Development and referenced in Biological Systems: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version