alexa Intrinsically disordered protein.
Immunology

Immunology

Journal of Vaccines & Vaccination

Author(s): Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P

Abstract Share this page

Proteins can exist in a trinity of structures: the ordered state, the molten globule, and the random coil. The five following examples suggest that native protein structure can correspond to any of the three states (not just the ordered state) and that protein function can arise from any of the three states and their transitions. (1) In a process that likely mimics infection, fd phage converts from the ordered into the disordered molten globular state. (2) Nucleosome hyperacetylation is crucial to DNA replication and transcription; this chemical modification greatly increases the net negative charge of the nucleosome core particle. We propose that the increased charge imbalance promotes its conversion to a much less rigid form. (3) Clusterin contains an ordered domain and also a native molten globular region. The molten globular domain likely functions as a proteinaceous detergent for cell remodeling and removal of apoptotic debris. (4) In a critical signaling event, a helix in calcineurin becomes bound and surrounded by calmodulin, thereby turning on calcineurin's serine/threonine phosphatase activity. Locating the calcineurin helix within a region of disorder is essential for enabling calmodulin to surround its target upon binding. (5) Calsequestrin regulates calcium levels in the sarcoplasmic reticulum by binding approximately 50 ions/molecule. Disordered polyanion tails at the carboxy terminus bind many of these calcium ions, perhaps without adopting a unique structure. In addition to these examples, we will discuss 16 more proteins with native disorder. These disordered regions include molecular recognition domains, protein folding inhibitors, flexible linkers, entropic springs, entropic clocks, and entropic bristles. Motivated by such examples of intrinsic disorder, we are studying the relationships between amino acid sequence and order/disorder, and from this information we are predicting intrinsic order/disorder from amino acid sequence. The sequence-structure relationships indicate that disorder is an encoded property, and the predictions strongly suggest that proteins in nature are much richer in intrinsic disorder than are those in the Protein Data Bank. Recent predictions on 29 genomes indicate that proteins from eucaryotes apparently have more intrinsic disorder than those from either bacteria or archaea, with typically > 30% of eucaryotic proteins having disordered regions of length > or = 50 consecutive residues.

  • To read the full article Visit
  • Open Access
This article was published in J Mol Graph Model and referenced in Journal of Vaccines & Vaccination

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

ch[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords