alexa Introduction of the MASH1 gene into mouse embryonic stem cells leads to differentiation of motoneuron precursors lacking Nogo receptor expression that can be applicable for transplantation to spinal cord injury.


Journal of Alzheimers Disease & Parkinsonism

Author(s): Hamada M, Yoshikawa H, Ueda Y, Kurokawa MS, Watanabe K, , Hamada M, Yoshikawa H, Ueda Y, Kurokawa MS, Watanabe K,

Abstract Share this page

Abstract ES cells transfected with the MASH1 gene yielded purified spinal motoneuron precursors expressing HB9 and Islet1. The cells lacked the expression of Nogo receptor that was of great advantage for axon growth after transplantation to an injured spinal cord. After transplantation, mice with the complete transection of spinal cord exhibited excellent improvement of the motor functions. Electrophysiological assessment confirmed the quantitative recovery of motor-evoked potential in the transplanted spinal cord. In the grafted spinal cord, gliosis was inhibited and Nogo receptor expression was scarcely detected. The transplanted cells labeled with GFP showed extensive outgrowth of axons positive for neurofilament middle chain, connected to each other and expressed Synaptophysin, Lim1/2 and Islet1. Thus, the in vivo differentiation into mature spinal motoneurons and the reconstitution of neuronal pathways were suggested. The grafted cell population was purified for neurons and was free from teratoma development. These therapeutic strategies may contribute to a potent treatment for spinal cord injury in future. This article was published in Neurobiol Dis and referenced in Journal of Alzheimers Disease & Parkinsonism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version