alexa Inverse relationship between V˙O2max and gross efficiency.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Sports Medicine & Doping Studies

Author(s): Hopker J, Coleman D, Jobson SA, Passfield L

Abstract Share this page

Abstract The aim of this study was to identify if an inverse relationship exists between Gross Efficiency (GE) and V˙O2max in trained cyclists. In Experiment 1, 14 trained cyclist's GE and V˙O2max were recorded at 5 different phases of a cycling 'self-coached' season using an incremental laboratory test. In Experiment 2, 29 trained cyclists undertook 12 weeks of training in one of 2 randomly allocated groups (A and B). Over the first 6 weeks Group A was prescribed specific high-intensity training sessions, whilst Group B were restricted in the amount of intensive work they could conduct. In the second 6-week period, both groups were allowed to conduct high intensity training. Results of both experiments in this study demonstrate training related increases in GE, but not V˙O2max. A significant inverse within-subject correlation was evident in experiment 1 between GE and V˙O2max across the training season (r=-0.32; P<0.05). In experiment 2, a significant inverse within-subject correlation was found between changes in GE and V˙O2max in Group A over the first 6 weeks of training (r=-0.78; P<0.01). Resultantly, a training related inverse relationship between GE and V˙O2max is evident in these groups of trained cyclists. © Georg Thieme Verlag KG Stuttgart · New York. This article was published in Int J Sports Med and referenced in Journal of Sports Medicine & Doping Studies

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords