alexa Investigating the effect of particle size and shape on high speed tableting through radial die-wall pressure monitoring.
Chemical Engineering

Chemical Engineering

Journal of Chemical Engineering & Process Technology

Author(s): AbdelHamid S, Alshihabi F, Betz G

Abstract Share this page

Abstract Investigating particle properties such as shape and size is important in understanding the deformation behavior of powder under compression during tableting. Particle shape and size control the pattern of powder rearrangement and interaction in the die and so the final properties of the compact. The aim of this study was to examine the effect of particle size and shape on compactability. Particle friction and adhesion were investigated through radial die-wall (RDW) pressure monitoring. To fulfill this aim, powders and granules of different sizes and shapes of materials with different compaction behaviors were used. Compaction simulation using the Presster with an instrumented die was applied. Small particle size increased residual die-wall pressure (RDP) and maximum die-wall pressure (MDP) (p<0.05) for plastic and viscoelastic materials, respectively, while big particle size had an opposite effect. No effect was found on brittle material, however big particle size showed higher friction for such materials. Regarding morphology, fibrous elongated particles of microcrystalline cellulose had less friction tendency to the die-wall in comparison to rugged surface mannitol particles. RDW pressure monitoring is a useful tool to understand the compactability of particles in respect to size and shape. Copyright © 2011 Elsevier B.V. All rights reserved. This article was published in Int J Pharm and referenced in Journal of Chemical Engineering & Process Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords