alexa Investigation of protonatable residues in Rhodothermus marinus caa3 haem-copper oxygen reductase: comparison with Paracoccus denitrificans aa3 haem-copper oxygen reductase.
Cardiology

Cardiology

Journal of Clinical & Experimental Cardiology

Author(s): Soares CM, Baptista AM, Pereira MM, Teixeira M

Abstract Share this page

Abstract The Rhodothermus marinus caa(3 )haem-copper oxygen reductase contains all the residues of the so-called D- and K-proton channels, with the notable exception of the helix VI glutamate residue (Glu278(I) in Paracoccus denitrificans aa(3)), being nevertheless a true oxygen reductase reducing O(2) to water, and an efficient proton pump. Instead, in the same helix, but one turn below, it has a tyrosine residue (Tyr256(I), R. marinus caa(3) numbering), whose hydroxyl group occupies the same spatial position as the carboxylate group of Glu278(I), as deduced by comparative modelling techniques. Therefore, we proposed previously that this tyrosine residue could play an important role in the proton pathway. In this article we further study this hypothesis, by investigating the equilibrium thermodynamics of protonation in R. marinus caa(3), using theoretical methodologies based on the structural model previously obtained. Control calculations are also performed for the P. denitrificans aa(3) oxygen reductase. In both oxygen reductases we find several residues that are proton active (i.e., that display partial protonation) at physiological pH, some of them being redox sensitive (i.e., sensitive to the protein redox state). However, the caa(3 )Tyr256(I) is not proton active at physiological pH, in contrast to the aa(3) Glu278(I) which is both proton active at physiological pH and shows a high redox sensitivity. In R. marinus caa(3) we do not find any other residues in the same protein zone that can have this property. Therefore, there are no putative D-channel residues that are proton active in this oxidase. The protonatable residues of the K-channel are much more functionally conserved in both oxygen reductases than the same type of residues in the D-channel. Two (Tyr262(I) and Lys336(I), caa(3) numbering) out of three protonatable K-channel residues are proton active and redox sensitive in both proteins. This article was published in J Biol Inorg Chem and referenced in Journal of Clinical & Experimental Cardiology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords