alexa Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions.


Journal of Civil & Environmental Engineering

Author(s): Li Y, Wang Y, Pennell KD, Abriola LM

Abstract Share this page

Abstract A coupled experimental and mathematical modeling investigation was undertaken to explore nanoscale fullerene aggregate (nC60) transport and deposition in water-saturated porous media. Column experiments were conducted with four different size fractions of Ottawa sand at two pore-water velocities. A mathematical model that incorporates nonequilibrium attachment kinetics and a maximum retention capacity was used to simulate experimental nC60 effluent breakthrough curves and deposition profiles. Fitted maximum retention capacities (S(max)), which ranged from 0.44 to 13.99 microg/g, are found to be correlated to normalized mass flux. The developed correlation provides a means to estimate S(max) as a function of flow velocity, nanoparticle size, and mean grain size of the porous medium. Collision efficiency factors, estimated from fitted attachment rate coefficients, are relatively constant (approximately 0.14) over the range of conditions considered. These fitted values, however, are more than 1 order of magnitude larger than the theoretical collision efficiency factor computed from Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (0.009). Data analyses suggest that neither physical straining nor attraction to the secondary minimum is responsible for this discrepancy. Patch-wise surface charge heterogeneity on the sand grains is shown to be the likely contributor to the observed deviations from classical DLVO theory. These findings indicate that modifications to clean-bed filtration theory and consideration of surface heterogeneity are necessary to accurately predict nC60 transport behavior in saturated porous media.
This article was published in Environ Sci Technol and referenced in Journal of Civil & Environmental Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version