alexa Investigations of the in vitro transport of human milk oligosaccharides by a Caco-2 monolayer using a novel high performance liquid chromatography-mass spectrometry technique.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Gnoth MJ, Rudloff S, Kunz C, Kinne RK

Abstract Share this page

Abstract Complex lactose-derived oligosaccharides belong to the main components of human milk and are believed to exert multiple functions in the breast-fed infant. Therefore, we investigated the transepithelial transport of human milk oligosaccharides over Caco-2 monolayers. Main human milk oligosaccharides (HMOs) in the apical, basolateral, or intracellular compartment were separated by high performance liquid chromatography using a Hypercarb(TM) column and analyzed on line by mass spectrometry. This method allowed the identification and quantification of these components in intra- and extracellular fractions without prior purification. Using this technique we were able to show that acidic and neutral HMOs cross the epithelial barrier. The transepithelial flux of neutral, but not acidic, oligosaccharides was temperature-sensitive and partly inhibited by brefeldin A and bafilomycin A. Furthermore, net flux from the apical to the basolateral compartment was only observed for the neutral components. Similarly, apical cellular uptake was only found for neutral components but not for acidic oligosaccharides. Intracellular concentrations of neutral HMOs were significantly increased by inhibitors of transcytosis such as brefeldin A, N-ethylmaleimide, or bafilomycin A. The cellular uptake was saturable, and an apparent K(m) for lacto-N-fucopentaose I of 1.7 +/- 0.1 mmol/liter and for lacto-N-tetraose of 1.8 +/- 0.4 mmol/liter was determined. Furthermore, the uptake of lacto-N-fucopentaose I could be inhibited by the addition of the stereoisomer lacto-N-fucopentaose II but not by lacto-N-tetraose. These findings suggest that neutral HMOs are transported across the intestinal epithelium by receptor-mediated transcytosis as well as via paracellular pathways, whereas translocation of acidic HMOs solely represents paracellular flux. This article was published in J Biol Chem and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords