alexa Involvement of kappa-opioid receptors and sigma receptors in memory function demonstrated using an antisense strategy.


Journal of Addiction Research & Therapy

Author(s): Hiramatsu M, Hoshino T

Abstract Share this page

Abstract Although antinociceptive effects of U-50,488H (trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl] cyclohexyl) benzeneacetamide methanesulfonate and (-)-pentazocine have been reported to influence kappa-opioid receptors, the involvement of kappa-opioid receptors in learning and/or memory is still controversial. We have recently reported that the memory improving effect of (-)-pentazocine was antagonized by sigma1 receptor antagonist. In this study, we examined the effects of several antisense oligodeoxynucleotides (antisenses) to kappa1-opioid receptors and sigma1 receptor on memory and nociceptive function. Male ddY mice were treated subcutaneously (s.c.) with scopolamine (1.65 mumol/kg) and/or test drugs 30 min before a Y-maze test. U-50,488H significantly improved the scopolamine-induced impairment of spontaneous alternation behavior. Twenty micrograms of antisense targeting exons 2 and 3 of the kappa1-opioid receptor significantly reversed the effects of U-50,488H, but antisense targeting exon 1 and mismatch sense did not. The antisense targeting exon 3 was most effective. These antisenses themselves did not affect normal mice, indicating that kappa1-opioid receptors do not tonically regulate memory function. All three antisenses equally prevented U-50,488H-induced antinociceptive effects in the acetic-acid-induced writhing test. Pretreatment with antisense targeting sigma1 receptors (AS-sigma1) completely prevented the memory-improving effects of (-)- and (+)-pentazocine, although U-50,488H ameliorated the scopolamine-induced impairment of spontaneous alternation behavior in AS-sigma1-treated mice. These results suggest that kappa1-opioid receptors containing different exons have a distinct function in memory and nociceptive functions. Furthermore, kappa-opioid receptors agonist showing analgesic effects act on kappa-opioid receptors or sigma receptors and play important roles only when memory function is impaired, but the two neuronal systems regulate memory function independently. This article was published in Brain Res and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version