alexa Ion imaging during axolotl tail regeneration in vivo.
General Science

General Science

Biological Systems: Open Access

Author(s): Ozkucur N, Epperlein HH, Funk RH, Ozkucur N, Epperlein HH, Funk RH

Abstract Share this page

Abstract Several studies have reported that endogenous ion currents are involved in a wide range of biological processes from single cell and tissue behavior to regeneration. Various methods are used to assess intracellular and local ion dynamics in biological systems, e.g., patch clamping and vibrating probes. Here, we introduce an approach to detect ion kinetics in vivo using a noninvasive method that can electrophysiologically characterize an entire experimental tissue region or organism. Ion-specific vital dyes have been successfully used for live imaging of intracellular ion dynamics in vitro. Here, we demonstrate that cellular pH, cell membrane potential, calcium, sodium and potassium can be monitored in vivo during tail regeneration in the axolotl (Ambystoma mexicanum) using ion-specific vital dyes. Thus, we suggest that ion-specific vital dyes can be a powerful tool to obtain electrophysiological data during crucial biological events in vivo. (c) 2010 Wiley-Liss, Inc. This article was published in Dev Dyn and referenced in Biological Systems: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version